Agentic AI on the

Edge of Transparency

The OCCVI Observatory
and the ARCON Pipeline
for Mapping
Crime, Corruption, and Harm
in Latin America and Beyond

Eduardo Salcedo-Albarán Luís Jorge Garay-Salamanca

Agentic AI on the Edge of Transparency: The OCCVI Observatory and the ARCON Pipeline for Mapping
Crime, Corruption, and Harm in Latin America and Beyond
Vortex Working Paper No. 71
© <i>Eduardo Salcedo-Albarán</i> , esa@scivortex.org - SciVortex Corp, 2025 © <i>Luis Jorge Garay Salamanca</i> , ljg@scivortex.org - SciVortex Corp, 2025
This document's text, images, audio, or video are protected by copyright. This document's partial or total reproduction is only permitted if its author and publisher are quoted and referenced. The opinions expressed in this publication are those of the authors and do not reflect the opinions or views of Vortex
Foundation or SciVortex Corporation.
© First electronic edition by Vortex Foundation and the SciVortex Corporation, Tampa, Florida, October 2025. Copyright

Table of Contents

1.	 From Fragmentation and Opacity to Pattern Recognition Agentic Artificial Intelligence Against Networks of Crime and Corruption 		4
2.			5
3.	Aut	comated Robotic for Criminal Observation Networks	7
4.	Towards a semi-autonomous global observatory of Crime, Corruption, and Victimization		11
	4.1.	Mapping the Inflexion Points	11
	4.2.	Structural Archeology of Harm in Latin America	12
	4.3.	Structural Convergences and Regional Divergences	13
5.	5. Conclusions: From Description to Disruption		14
6.	6. Bibliography		16

Agentic AI on the Edge of Transparency: The OCCVI Observatory and the ARCON Pipeline for Mapping Crime, Corruption, and Harm in Latin America and Beyond

Eduardo Salcedo-Albarán* & Luís Jorge Garay-Salamanca**

Abstract

This paper presents a new epistemic framework for analyzing transnational corruption and organized crime using *Agentic Artificial Intelligence* (AAI). It introduces ARCON (Automated Robotics for Criminal Observation Networks) and OCCVI (Observatory of Crime, Corruption, and Victimization) as a semi-autonomous analytical system capable of transforming dispersed media data into structured knowledge about macro-criminal networks. The first section explores the limits of traditional investigative approaches in contexts of fragmentation and opacity. The second section conceptualizes corruption as a criminal phenomenon that thrives in the absence of transparency, arguing that AAI represents the most recent frontier in exposing its operational logic. Section three presents ARCON's analytical cycle, from data ingestion to network graph generation through VORISOMA, culminating in OCCVI's synthetic outputs. The fourth section introduces the *Structural Archeology of Harm* collection, which maps causal links between criminal structures and systemic victimization across Latin America. The final section reflects on the normative and methodological implications of integrating AAI into long-term anti-corruption strategies, emphasizing the need to center harm as an analytical category.

Keywords: Agentic AI · Transnational Corruption · Criminal Network Analysis · Institutional Co-optation · Structural Harm.

^{*} Founder and director, Vortex Foundation and SciVortex Corp.

^{**} Scientific Director, Vortex Foundation and SciVortex Corp.

1. From Fragmentation and Opacity to Pattern Recognition

Why this matters: Without the most advanced analytical tools, investigators are trapped in fragmented data environments that criminal networks exploit to remain hidden. Recognizing patterns across jurisdictions, social agents, and modalities requires epistemic tools capable of scaling beyond human limits —tools that can illuminate the very structures where opacity becomes a form of protection.

riminal networks —whether drug cartels, human trafficking rings, terrorist cells, or financial crime syndicates notoriously complex and opaque (Salcedo-Albarán & Garay-Salamanca, Macro-Criminalidad: Complejidad y Resiliencia de las Redes Criminales, 2016). They involve networks and subnetworks of diverse individuals —including "full-time criminals", public servants, practitioners, private agents, among others— and State, semi-state, and private companies (Garay-Salamanca & Salcedo-Albaran, Additionally, those networks and subnetworks span across local, regional, and national jurisdictions, surpassing legal, institutional, and geographical boundaries (Salcedo-Albarán & Garay-Salamanca, Macro-Criminalidad: Complejidad y Resiliencia de las Redes Criminales, 2016).

For investigators, activists, and judicial operators, unraveling these elaborate structures is a daunting task. Traditional methods often require painstaking manual collection and correlation of clues from disparate data sources (surveillance, phone records, financial transactions, open web, etc.). The sheer volume and variety of data in modern cases can easily overwhelm human analysts (Tsuen Wong, 2025).

On the other hand, corruption networks, like any other type of criminal network, thrive in the absence of transparency and accountability (Kurtzman, Yago, & Phumiwasan, 2004). From discretionary administrative decisions and fragmented procurement processes to

offshore asset concealment and institutional inertia, the very survival of corruption networks depends on their ability to evade coherent, system-wide visibility (Chang, Rusu, & Kohler, 2021; Sapkota, Roumeliotis, & Karkee, 2025; Renteria, 2023). For this reason, transparency is not just a principle of good governance —it is a permanent field of activism in which Agentic AI (AAI) emerges as one of the most sophisticated and disruptive tools available to date.

Therefore, AAI has emerged as a promising approach to tackle challenges that facilitate opacity and data fragmentation. Specifically, this approach refers to AI "agents" endowed with a degree of autonomy — sophisticated, self-directed software entities that can pursue investigative and analysis goals while reducing human prompting and permanently consulting relevant background knowledge bases.

Unlike conventional analytical tools that require explicit instructions, these AAI actively make some structured decisions in a human-like manner. This, of course, poses challenges in terms of alignment and human supervision (Mukherjee & Hanwen Chang, 2025). It can continuously scour large datasets, identify patterns or anomalies, follow leads across multiple sources, and even initiate actions (within preset bounds) to gather further information. More importantly, these tasks can be conducted faster than any human team could manage, allowing investigators to draw insights from data at an unprecedented scale.

However, this does not imply that AAI replaces or overrides expert human supervision. On the contrary, its capacity to process large datasets and autonomously identify complex patterns introduces new forms of dependence on specialized oversight. Human analysts remain indispensable for interpreting ambiguous signals, validating AI-generated inferences, and contextualizing insights within the legal, ethical, and institutional frameworks. As such, AAI does not automate judgment—it amplifies the need for it by expanding its scope.

Specifically, AAI systems excel at mapping and visualizing complex criminal networks by merging capabilities from machine learning, knowledge graphs, and big data analytics. They can ingest massive, heterogeneous data and then automatically correlate data points to recognize hidden patterns and relationships (Day, 2022). By building a connected knowledge graph of entities and their interactions, AAI helps to uncover criminal structures that would be difficult to discern manually. In Criminal Networks Analysis, AAI assists during the categorization and

formulation of network ontologies (Mika, 2007) (Eriksson, 2005).

Beyond static network structure, AAI can also assist in analyzing temporal and spatial patterns of criminal activity by identifying relationships through time-stamped data (e.g., dates of meetings, money transfers, or attacks) and detecting cycles in activity that may indicate planning stages or coordinated operations. Geographic analysis can also map hotspots of activity and correlate them with specific crimes. This multidimensional insight offers a far richer picture of the criminal enterprise, encompassing not only *who* is involved but also *when* and *where* they operate (Salcedo-Albarán & Garay-Salamanca, Macro-Criminalidad: Complejidad y Resiliencia de las Redes Criminales, 2016) (Kasirzadeh & Gabriel, 2025).

Automated Visualization is another feature of AAI. In the field of financial crime investigations, agentic AI can be utilized to create money-flow graphs that illustrate intricate laundering circuits, as discussed in the following sections.

2. Agentic Artificial Intelligence Against Networks of Crime and Corruption

Why this matters: Systemic corruption is not an ethical anomaly —it is a criminal system sustained by opacity. Agentic AI helps expose this infrastructure by converting dispersed and fragmented evidence into structured knowledge.

In practice, systemic corruption functions as a criminal phenomenon, one that is organized, networked, resilient, and often indistinguishable from other illicit activities (Garay-Salamanca & Salcedo-Albaran, 2015; Salcedo-Albaran & Garay-Salamanca, Simbiosis entre crimen y corrupción: de la cooptación institucional en Colombia al colapso societal en Venezuela, 2025).

Whether through bribery, regulatory capture, institutional co-optation (Garay-Salamanca & Salcedo-Albaran, 2015), or financial laundering, corruption operates through the same structural logic as drug trafficking, human smuggling, or arms dealing: a logic of concealment, extraction, and impunity maintained by resilient networks of power that are sustained on

opaque actions of corrupt, criminal, and grey social agents and organizations (Garay Salamanca & Salcedo-Albarán, 2012; Garay-Salamanca & Salcedo-Albaran, 2015; Salcedo-Albarán & Garay-Salamanca, Macro-Criminalidad: Complejidad y Resiliencia de las Redes Criminales, 2016).

In this sense, corruption networks can and should be analyzed as criminal networks (Garay Salamanca, Salcedo-Albarán, & Macías, 2018d). They exhibit many of the same properties -modularity, adaptability, transnational reach—and often overlap with traditional criminal markets. Public officials, private contractors, offshore intermediaries, and professional enablers may all participate in schemes that blend legal and illegal activities. As such, the analytical tools used to understand organized crime — particularly criminal network analysis — are not only applicable to corruption but also essential. This is precisely where Agentic AI systems (D. B. Acharya, 2025) like ARCON, described in the following section, become transformative: by applying structured, scalable, and autonomous network analysis to domains traditionally studied through a restricted legal perspective, Agentic AI allows exposing corruption as an operational system rather than a purely legal deviation.

Transparency has long been recognized as a cornerstone in the fight against corruption. From the empirical and conceptual models proposed by Robert Klitgaard —who framed the formula Corruption = Monopoly + Discretion – Accountability— to the

practical efforts of multilateral institutions, civil society, and open government initiatives, increasing transparency has remained one of the most consistent prescriptions for curbing corruption (Klitgaard, Controlling Corruption, 1988; Klitgaard, Cleaning up and invigorating the civil service, 1997) and, in general, illicit behaviors (Garay Salamanca & Salcedo-Albarán, 2012).

However, conventional approaches to transparency often focus on surface-level access to documents, public records, or procurement data. While valuable, such access is frequently undermined by fragmentation, obfuscation, or the sheer complexity of the underlying systems. In this context, Agentic AI offers a structural leap by building analytical transparency through the reconstruction of knowledge networks, surfacing patterns, and connecting evidence across silos.

Rather than merely increasing the amount of accessible data, AAI expands human capacity to perceive and interpret illicit patterns that are opaque or difficult to identify due to data fragmentation, revealing coincidences behind seemingly isolated events. In this sense, agentic systems are not merely investigative aids; they are epistemological tools that can penetrate the informational fog, allowing corruption to endure. As such, AAI represents the latest frontier in the defense of transparency —one that moves beyond rhetoric to restructure how knowledge about corruption is produced, verified, and acted upon.

3. Automated Robotic for Criminal Observation Networks

Why this matters: Criminal ecosystems seem to evolve faster than our ability to document them. ARCON provides an agentic infrastructure necessary to convert fragmented, unstructured data into structured, defensible, and scalable knowledge.

ARCON (Automated Robotics Criminal foundational Observation Networks) is the technological layer of the Observatory of Crime, Corruption, and Victimization (OCCVI)¹. It operates at the base of a three-tiered system, responsible for the systematic collection, curation, and classification of media sources across diverse jurisdictions and criminal markets. This processed information feeds into VORISOMA, which constructs criminal network graphs and ultimately supports the OCCVI, the analytical layer that generates high-level synthetic insights. In this architecture, ARCON acts as an agentic infrastructure that transforms fragmented, raw media data into structured, analyzable knowledge. It does not merely support OCCVI —it sustains it by continuously illuminating the opaque dynamics in which global corruption and organized crime operate. ARCON has been defined as a robotic set because it comprehends and articulates several AI tools, from basic Universal Sentence Encoder algorithms, to third-party foundational LLMs:

- 1. Data Retrieval: ARCON connects to selected media outlet APIs to automatically collect articles and reports, ensuring consistent and structured input. By configuring this ingestion pipeline, the need for manual monitoring of open media sources is eliminated, allowing analysts to focus on higher-order analysis.
- 2. AI-powered Curation: Once data is retrieved, a specialized AI agent embedded within ARCON evaluates and prioritizes content related explicitly to transnational corruption and selected crime networks. This step is not merely a filter —it is a critical epistemic gatekeeper. Given the massive volume of available media sources, the risk of noise, redundancy, and semantic confusion is considerable. To mitigate this, ARCON deploys an AI agent that assesses the semantic, contextual, and topical relevance of each document before allowing it to be added to the knowledge base. Each piece of content is assigned a relevance score based on domain-specific parameters (e.g., presence of named institutions, social agents, operations, or financial structures). This scoring mechanism ensures that false positives — such as entertainment news or metaphorical uses of crimerelated language — are systematically excluded. As a result, this curation stage becomes the cornerstone of the entire analytical cycle, safeguarding the epistemic integrity of all subsequent processes, from classification to graph construction and inference generation.
- 3. AI-powered Classification: Once documents pass the relevance threshold established during the curation phase, they enter a structured classification pipeline. Here, another specialized algorithm that AI agents use categorizes each

¹ https://www.occvi.org

source into discrete criminal markets — such as illegal mining, human trafficking, or money laundering — based not only on surface-level keywords but also on narrative structures, co-occurrence patterns, and the semantic relationships among entities, actions, and institutions. This multi-layered analysis enables the system to distinguish between incidental mentions of criminal acts and substantive accounts of systemic criminal activity.

The classification stage supports a stratified thematic architecture, enabling the analytical process to operate with precision across distinct illicit economies. Documents are funneled into market-specific analytical clusters, which serve as the foundation for building modular network graphs in VORISOMA. In this way, each criminal market can be modeled according to its unique institutional logic, social agent typologies, geographic reach, and timeline. Ultimately, this phase enhances both analytical specificity and comparative insight, making it possible to identify not only internal dynamics within a single criminal market, but also structural overlaps and crossmarket linkages —essential for understanding transnational criminal ecosystems.

4. Entity Extraction and Cross-referencing: At this stage, ARCON operationalizes one of the most critical transitions in the analytical cycle: from textual information to structured, relational data. Through advanced Named Entity Recognition (NER) and disambiguation protocols, ARCON identifies and tags key social agents (e.g., individuals, corporations, government entities), referents (e.g., cities, geographic regions, jurisdictions), and institutional affiliations (e.g., ministries, courts, financial intermediaries) embedded in the curated documents.

As explained in Cano-Melani, Salcedo-Albaran, & Garay-Salamanca (2022), these stages result in

analyzing how nodes/agents interact in a criminal network. Each relationship/interaction consists of semantic entities linked through a verb and mapped to a piece of text approached as "empirical evidence". In this sense, VORISOMA(Vortex Intelligence Software for Observation of Macro-Criminality), as explained below, is a natural language processing (NPL) tool for Document Information Extraction (DIE) (Silva & Silva, 2021) through Named Entity Recognition (NER), which is a fundamental and initial task in various approaches for text localization and transcription (Marrero, Sánchez-Cuadrado, Andreadakis, 2009; Carbonell, Fornés, Villegas, & Lladós, 2020).

In this case, during a first-order NER task some layers of Entity Linking (EL) based upon syntax tree analysis (Wang & Han, 2015) are executed at the VORISOMA level to categorize the identified semantic entities/nodes and semantic entities/verbs; a process that has also been defined as Named Entity Disambiguation (NED) for entities identification task (Oliveira, y otros, 2021; Wang & Han, 2015; Trani, Ceccarelli, Lucchese, Orlando, & Perego, 2018; Shehata, 2022).

In the context of the ARCON's pipeline, the extracted semantic entities are not treated in isolation; instead, they are cross-referenced across the whole corpus to detect recurrence, co-occurrence, and contextual interdependence.

Importantly, ARCON incorporates temporal and semantic alignment mechanisms to differentiate between homonymous entities, such as individuals with the same name operating in distinct domains, or corporations with identical acronyms across countries. The system also performs contextual entity merging, where multiple aliases, translations, or spelling variants refer to the same underlying

agent, ensuring coherence across multilingual and cross-jurisdictional datasets.

This entity-level structuring enables the detection of overlapping structures —for instance, a logistics company mentioned in connection with illegal mining in one jurisdiction and money laundering in another. Once these procedures are fulfilled, ARCON identifies latent networks that would remain invisible in traditional case-by-case analysis. These insights not only inform the subsequent graph-building phase but also constitute a critical input for forensic validation, as each relational inference is traceable to source documents and mapped across multiple referential frames (temporal, geographic, institutional). This is reflected in the visual interface, where each piece of the original media source floats across the world map, linking the mentioned countries.

In essence, this phase transforms unstructured text into interoperable knowledge units, laying the groundwork for constructing complex, multimodal criminal graphs that preserve evidentiary fidelity while enabling scalable analysis.

5. Network Mapping: After extracting and crossreferencing entities, ARCON activates its network modeling protocols by feeding the structured data into criminal network graphs using VORISOMA. This software environment specializes in

ARCON's pipeline:

6. Early Warnings_

AAI Data Retrieval_
 AI-powered Curation_
 AI-powered Classification_
 Entity Extraction_
 Network Mapping_

constructing multiplex graphs through network ontologies, where different types of relationships — such as co-optation, concealment, irregular authorization, victimization, and transactional flows — are captured as distinct yet interdependent layers within a unified network representation.

Each node in the Criminal Network Graph (CNG) corresponds to a distinct social agent (either a natural or legal person). At the same time, each edge represents a documented or inferred interaction, classified according to its nature (e.g., hierarchical command, financial transfer, regulatory manipulation, or coercive coordination). Crucially, all nodes and edges are traceable to specific documentary sources, ensuring both forensic defensibility and analytical reproducibility. This source-based architecture distinguishes VORISOMA from conventional graph engines: it is not only a visualization tool, but a knowledge infrastructure calibrated for securing data integrity in evidence across legal, journalistic, and academic domains.

In this stage, VORISOMA also calculates centrality indicators such as degree centrality and betweenness to identify the most relevant semantic entities/nodes in each case (Degenne & Forsé, 1999; Carrington, Scoot, & Wasserman, 2005; Cavallaro, et al., 2020).

In parallel, ARCON continuously updates the Criminal Aura Graph —a complementary layer that serves as the platform's primary visual interface. Unlike the CNG, the Criminal Aura Graph models and allows navigating indirect or structurally inferred geographic proximities between agents by analyzing shared behavioral patterns, temporal correlations, co-presence in documents, and spatial co-occurrence. This layer is particularly valuable in contexts where direct interactions are absent, concealed, or redacted, as it

enables analysts to explore structural suspicions, latent proximity, and potential omissions within the documentary corpus.

One of the most powerful outcomes of this visual logic is the ability to understand and analyze jurisdictional mapping (Lunstrum, 2025). By tracking transnational flows — such as crossborder asset transfers, corporate ownership chains, and evidentiary overlaps — ARCON, through the Criminal Aura Graph, reveals how criminal and corrupt networks operate across distinct territories. This capability enables the identification of concealed assets, offshore facilitators, and institutional enablers whose operations exploit jurisdictional asymmetries to evade scrutiny and prosecution.

VORISOMA's graph model is dynamically extensible, meaning that as new documents are ingested, entities are re-contextualized, and networks evolve. This results in a living cartography of macro-criminality, allowing for not only descriptive analysis but also hypothesis comparative testing, diagnostics across jurisdictions, and scenario modeling institutional interventions. In short, this phase transforms fragmented and dispersed evidence into an integrated epistemic structure —one that reveals the architecture of harm that sustains corruption and organized crime at both national and transnational levels.

6. Early Warnings and Analysis pieces: The resulting Criminal Network Graphs (CNGs) —

together with their consolidated evidence tables generated throughout VORISOMA—are then directed toward a higher-order layer of the agentic AI system: the Observatory of Crime, Corruption, and Victimization (OCCVI). This layer serves as the synthetic and interpretive interface of the platform, transforming structured network data into accessible visual outputs, infographics, policy briefs, and strategic alerts. Importantly, OCCVI is not merely a dissemination interface —it serves as the epistemic horizon where criminal patterns are reframed in terms of public harm, institutional decay, and systemic victimization.

At this stage, special analytical emphasis is placed on exploring the conceptual and empirical causality between criminal activity, systemic corruption, and human victimization. This includes mapping how co-opted institutions fail to prevent harm, identifying victim clusters based on geography or vulnerability, and revealing how specific criminal economies (e.g., extractive markets or opaque procurement circuits) produce measurable societal impacts. Through this inferential perspective, the OCCVI layer makes visible not only who benefits from criminal structures but who is harmed, how, and under what institutional conditions.

In sum, this final analytical stage completes the agentic AI cycle by linking structural diagnosis with normative urgency. It positions each case not as an isolated event, but as part of a broader architecture of harm that must be confronted through evidence-based transparency, institutional reform, and victim-centered accountability.

4. Towards a semi-autonomous global observatory of Crime, Corruption, and Victimization

Why this matters: The causal link between crime, corruption, and harm is often ignored. Therefore, analyzing macro-criminality at scale demands more than just data collection —it requires a semi-autonomous system that can structure, relate to, and interpret complexity in real-time.

The complexity and scale velocity of modern criminal ecosystems have surpassed the analytical capacities of traditional investigative and oversight institutions. Transnational networks of crime and corruption intertwined within illicit markets, offshore financial circuits, and captured and co-opted institutions operate across jurisdictions, legal frameworks, and languages. In such an environment, manual investigation, static reports, and reactive governance are no longer sufficient. Addressing these challenges requires not only advanced analytical tools, but also a new organizational logic of observation: one that is semi-autonomous, scalable, and continuously updated.

This is the foundational rationale for the Observatory of Crime, Corruption, and Victimization (OCCVI). Unlike conventional observatories based on periodic reports and manual data curation, OCCVI integrates a semi-automated pipeline that enables continuous ingestion, structuration, and interpretation of criminal evidence. Its agentic anchored in ARCON VORISOMA — allows the system to detect, represent, and compare macro-criminal patterns in real-time, while ensuring documentary traceability and evidentiary rigor. In this model, Artificial Intelligence agents act as epistemic collaborators, expanding human capacity to perceive, and act upon fragmented transnationally dispersed information.

Crucially, OCCVI added value lies in its capacity to make victimization patterns visible through analysis, to trace institutional responsibility across layers of concealment and omission, and to inform targeted interventions by prosecutors, journalists, activists, and international cooperation bodies. In doing so, OCCVI—and its underlying pipelines, such as ARCON and VORISOMA—does not replace human expertise; it amplifies it, systematizing the insights from thousands of documents into actionable intelligence.

Moreover, the semi-automated architecture of OCCVI allows it to remain operationally sustainable and epistemically adaptive. It can scale across regions, languages, and case types without requiring proportional increases in human resources. This positions it as a public intelligence infrastructure capable of supporting long-term anti-corruption strategies, institutional monitoring, and transitional justice efforts.

4.1. Mapping the Inflexion Points

One of the foundational aims of the OCCVI is not merely to identify social agents and events associated with corruption and organized crime, but to reconstruct the structural processes through which these phenomena produce harm. To that end, the initiative developed a collection entitled Structural Archeology of Harm, a series of analytical pieces that examine, with conceptual and empirical evidence, the causal relationships between systemic corruption, organized criminality, and human victimization.

This collection builds upon the outputs of ARCON and VORISOMA, constituting a novel form of semi-automated epistemic modeling. It is grounded in more than 12,000 journalistic sources published by *The Guardian*, which were retrieved, curated, and structured by ARCON through a pipeline specifically designed to identify inflection points within criminal and corruption networks. These inflection points correspond to periods and regions where the density, recurrence, or institutional visibility of illicit interactions increases significantly, enabling the identification of networked patterns of harm.

Each analytical piece within the collection offers a synthetic reconstruction of these configurations through the integration of documented entities, criminal economies, public institutions, and victim These reconstructions are visualized groups. using network graphs, jurisdictional flows, and typologies of interaction, all of which are supported by traceable evidentiary documentation. Although the final published article provides anecdotal illustrations, it is grounded in the Interaction's evidence and the Criminal Network Graphs consolidated by ARCON. As a result, the collection aims to systematize how specific episodes of corruption and organized crime evolve into patterns of institutional co-optation and human victimization.

Central to this framework is the proposition that harm is not a contingent or accidental by-product of corruption, but a predictable and often concealed structural outcome. Victimization —whether through violation of human rights, displacement, silencing, dispossession, or exposure to violence— often remains undocumented in legal or journalistic records. The analytical logic of the Structural Archeology of Harm collection allows such forms of harm to be inferred, modeled, and represented as part of a broader architecture of criminal power.

While the current series includes cases such as Venezuela's foundational co-optation of a petro-

state in 2000, Mexico's political protection networks of criminality, and cross-border laundering systems in the Caribbean, the collection is designed to be iterative and cumulative. As new datasets are processed and additional inflection points are identified, future entries will expand thematically and geographically, encompassing, for example, environmental criminality, judicial erosion, illicit financial flows, and patterns of narrative and institutional suppression.

Ultimately, the Structural Archeology of Harm is intended to function as a platform for forensic memory and comparative diagnosis, bridging data science, legal analysis, and transitional justice. It seeks not only to inform legal or policy interventions, but also to support broader processes of social and institutional recognition, where harm is no longer fragmented, invisible, or reduced to isolated cases, but is instead analyzed and documented as a structural feature of complex criminal ecosystems.

4.2. Structural Archeology of Harm in Latin America

The Latin American region has long been characterized by hybrid governance structures, where legal, illicit, and extralegal powers operate in complex entangled frameworks. Through the and OCCVI's Structural Archeology of Harm collection, ARCON produces a set of empirical insights on how corruption and organized crime operate not only as parallel social processes, but as systemic engines of victimization, regulatory erosion, and institutional cooptation. This section presents a comparative synthesis of country-specific case studies from Brazil, Colombia, Venezuela, Peru, Ecuador, Guatemala, and the Caribbean. As previously mentioned, each case has been reconstructed through more than 12,000 structured media records from The Guardian, which ARCON transformed into criminal network graphs and victimization patterns.

The findings reveal a regional continuum in which elite protection, impunity mechanisms, and extractive criminal economies reproduce harm as a systemic feature—not an accident—of corrupt governance. While typologies of crime vary —from trafficking and laundering to resource plunder and judicial capture—the *modus operandi* remains common: the co-optation of state institutions, the concealment of accountability through legal camouflage, and the selective enforcement of justice.

4.3. Structural Convergences and Regional Divergences

- Criminal-Corruption Causality Nexus:
 Corruption and criminality do not exist in separate spheres in all cases. Instead, corruption enables organized crime by removing institutional friction, while the proceeds of crime sustain political and bureaucratic power. Whether through plea deals in Brazil, licensing fraud in Ecuador, or shell NGOs in Colombia, corruption becomes the infrastructure through which harm is operationalized (Salcedo-Albaran & Garay-Salamanca, Simbiosis entre crimen y corrupción: de la cooptación institucional en Colombia al colapso societal en Venezuela, 2025).
- Collapse: The archeological insights offered by ARCON challenge the narrative of state "failure" in Latin America. Often, these states are not failing but are selectively functional. Institutions are not absent, but rather reconfigured (Garay, Salcedo-Albaran, Beltran, & Guerrero, 2008b) (Garay, Salcedo-Albaran, & Beltran, 2009) (Garay Salamanca & Salcedo-Albarán, 2012). Even in the case of highly reconfigured institutions, like in Venezuela, formal -and illegitimate-procedures remain: courts adjudicate to protect

- elites, auditors document without enforcement, and military units serve as private security for illicit markets.
- Legal Camouflage and the Performance of **Reform:** Many regimes deploy transparency discourse and legal reform language to legitimize criminalized practices. Examples Venezuela's populist decrees, Colombia's anticorruption commissions, and Peru's extractivism. These are not "sustainable" contradictions, but dual and distorted use mechanisms that signal legality—and sometimes project it at the international level-while enabling harm.
- Victimization as a Structural Outcome:
 Victim groups range widely —public servants,
 whistleblowers, indigenous populations,
 migrants, children— but share one condition:
 their invisibility within dominant narratives.
 Often, victimization is both cumulative and
 institutional, yet it is usually omitted in policy
 design (Salcedo-Albarán E., Garay-Salamanca,
 Sánchez-Moreno, & de Freitas, 2020) (SalcedoAlbaran & Garay-Salamanca, 2022). ARCON
 surfaces these harms not only as consequences
 but as design features of hybrid and sometimes
 criminal governance.
- Transnational Interdependencies: Several cases already published at the OCCVI demonstrate how local elites rely on transnational criminal or corporate networks to sustain illicit activities. On the other hand, jurisdictional mapping by ARCON reveals cross-border laundering, parallel procurement schemes, and the export of victimization patterns, such as Peruvian gold entering global markets without accountability.

5. Conclusions: From Description to Disruption

Why This Matters: Understanding corruption as a series of fragmented events obscures its systemic logic. The OCCVI model reframes corruption as networked harm —enabling new forms of evidence, accountability, and victim-centered reform in the fight against transnational criminal governance.

This research paper proposes a paradigm shift in the study and documentation of transnational corruption and organized crime. Far from isolated events or anomalies of governance, it is acknowledged that these phenomena emerge as systemic configurations that rely on networked concealment, institutional co-optation, transnational coordination. As such, confronting them requires moving beyond fragmented, case-byinquiry toward structurally coherent, epistemically robust, and technologically scalable approaches.

The Agentic AI model, embodied in the ARCON described system and the broader OCCVI infrastructure, responds to this demand by transforming opaque textual and evidentiary data into relational architectures of harm. This process — grounded in semi-autonomous curation, structured classification, entity resolution, and network modeling — generates a form of analytical transparency that traditional investigative methods struggle to attain. By mapping criminal ecosystems as living systems of interaction, concealment, and victimization, ARCON enables a fundamental epistemological reorientation: it makes visible the logic through which harm is produced, sustained, and distributed.

From a conceptual standpoint, this approach reinforces the idea that corruption cannot be adequately understood without considering criminal networks and victimization. It functions not merely as the erosion of public ethics, but as the operational logic of power within hybrid regimes — particularly in regions like Latin

America, where legal and illegal structures are institutionally intertwined.

The Structural Archeology of Harm collection demonstrates that harm is not an unintended consequence of these configurations —it is a structural output. Victimization, therefore, must be treated as a **primary analytical focus**, not an incidental feature.

The data and analytical reconstructions generated by ARCON suggest a need to radically rethink conventional anti-corruption strategies in Latin America. First, technical capacity (such auditing, legislation, and enforcement) must be matched by epistemic infrastructure platforms like OCCVI that illuminate the relational architecture of harm. Second, reform efforts must prioritize victim visibility, treating harm not as collateral damage but as a core criminal diagnostic governance. ofFinally, international social agents especially those in finance, extractives, and global law enforcement — must be understood not merely as partners, but as potential coauthors of the harm architectures that are exposed.

Methodologically, the OCCVI marks a significant departure from conventional observatories. Rather than relying on retrospective reporting or expert-selected samples, it embodies a continuous, semi-automated observatory driven by agentic infrastructure. This positions OCCVI as an example of new epistemic institutions capable of producing legally defensible, policy-relevant, and publicly accessible knowledge across time and

space. Its scalability and modularity ensure that it can be adapted across regions and topics, while preserving the forensic integrity of its analytical outputs.

The Latin America comparative analysis presented here affirms the region's condition as an unfortunate and undesirable laboratory of structural harm: a space where networks of political protection, resource extraction, and impunity perpetuate extractive and violent governance. Yet it also suggests a replicable path forward. By fusing AI epistemics with network science and legal analysis, the OCCVI offers not

only a new way of seeing, but also a new mode of acting—one that centers on victims, demands transparency, and confronts macro-criminality not with rhetoric but with analytical background.

In closing, the model explored here is not simply a technological proposal or advancement. It is a normative intervention that challenges the fragmentation of anticorruption discourse and calls for a reinterpretation of evidence, a re-humanization of harm, and a reinvention of institutional accountability in the face of evolving criminal power.

6. Bibliography

- Cano-Melani, J. A., Salcedo-Albaran, E., & Garay-Salamanca, L. J. (2022). A model for evaluating AI generated network graphs. Bogota / St. Petersburg: Vortex Foundation / SciVortex Corp.
- Carbonell, M., Fornés, A., Villegas, M., & Lladós, J. (2020). A neural model for text localization, transcription and named entity recognition in full pages. *Pattern Recognition Letters*, 136, 219-227.
- Carrington, P. J., Scoot, J., & Wasserman, S. (2005). *Models and Methods in Social Network Analysis*. New York: Cambridge University Press.
- Cavallaro, L., Ficara, A., De Meo, P., Fiumara, G., Catanese, S., Bagdasar, B., . . . Liotta, A. (2020). Disrupting resilient criminal networks through data analysis: The case of Sicilian Mafia. *PLoS ONE 15(8)*:, 15(8), 1-22.
- Chang, Z., Rusu, V., & Kohler, J. C. (2021). The Global Fund: why anti-corruption, transparency and accountability matter. *Globalization and Health*, 17(198), https://doi.org/10.1186/s12992-021-00753-w.
- D. B. Acharya, K. K. (2025). Agentic AI: Autonomous Intelligence for Complex Goals—A Comprehensive Survey. *IEEE Access*, *13*, 18912-18936,.
- Day, M. (2022). Artificial intelligence for knowledge graphs of cryptocurrency anti-money laundering in fintech. ASONAM '21: Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, 439 - 446.
- Degenne, A., & Forsé, M. (1999). Introducing Social Networks. London: SAGE Publications.
- Eriksson, K. (2005). On the Ontology of Networks. Communication and Critical/Cultural Studies, 305-323.
- Garay Salamanca, L. J., & Salcedo-Albarán, E. (2012). Narcotráfico, Corrupción y Estados: Cómo las redes ilícitas han reconfigurado las instituciones de Colombia, Guatemala y México. Ciudad de México: Random House Mondadori.
- Garay Salamanca, L., Salcedo-Albarán, E., & Macías, G. (2018d). *Macro-Corruption and Institutional Co-optation: The "Lava Jato" Criminal Network*. Bogotá, Colombia: Fundación Vortex.
- Garay, L. J., Salcedo-Albaran, E., & Beltran, I. (2009). De la Captura del Estado a la Reconfiguración Cooptada del Estado. Bogotá: Método.
- Garay, L. J., Salcedo-Albaran, E., Beltran, I., & Guerrero, B. (2008b). Reconfiguración cooptada del Estado: Más allá de la concepción tradicional de Captura Económica del Estado. Bogotá: Transparencia por Colombia.

- Garay-Salamanca, L. J., & Salcedo-Albaran, E. (2015). Drug Trafficking, Corruption and States: How Illicit Networks Shaped Institutions in Colombia, Guatemala and Mexico. Bloomington: Vortex Foundation.
- Kasirzadeh, A., & Gabriel, I. (2025). Characterizing AI Agents for Alignment and Governance. arXiv:2504.21848 [cs.CY].
- Klitgaard, R. (1988). Controlling Corruption. University of California Press.
- Klitgaard, R. (1997). Cleaning up and invigorating the civil service. *Public Administration and Development, 17*(5), 487–509.
- Kurtzman, J., Yago, G., & Phumiwasan, T. (2004, Oct. 15). *The Global Costs of Opacity*. Retrieved from MIT Sloan: https://sloanreview.mit.edu/article/the-global-costs-of-opacity/
- Lunstrum, E. &. (2025). Introducing Jurisdiction. Annals of the American Association of Geographers, 1005–1028.
- Marrero, M., Sánchez-Cuadrado, S., Morato, J., & Andreadakis, G. (2009). Evaluation of Named Entity Extraction Systems Mónica. *Advances in Computational Linguistics, Research in Computing Science*, 47-58.
- Mika, P. (2007). Ontologies are us: A unified model of social networks and semantics. *Journal of Web Semantics*, 5-15.
- Mukherjee, A., & Hanwen Chang, H. (2025). *Agentic AI: Autonomy, Accountability, and the Algorithmic Society*. https://doi.org/10.48550/arXiv.2502.00289 Focus to learn more.
- Novak, A., Bashtannyk, V., Parkhomenko, O., Kuybida, V., & Kobyzhcha, N. (2021). Information and Analytical Support of Anti-Corruption Policy . *International Journal of Computer Science and Network Security*, 134-140.
- Oliveira, I. I., Fileto, R., Speck, R., Garcia, L. P., Moussallem, D., & Lehmann, J. (2021). Towards Holistic Entity Linking: Survey and Directions. *Information Systems*, 95.
- Renteria, C. (2023). Making information silent: How opacity takes root in local governments? *Public Administration*, 285-301.
- Salcedo-Albarán, E., & Garay-Salamanca, L. (2016). *Macro-Criminalidad: Complejidad y Resiliencia de las Redes Criminales*. Bloomington: iUniverse, Vortex Foundation, Small Wars Journal.
- Salcedo-Albarán, E., Garay-Salamanca, L. J., Sánchez-Moreno, J., & de Freitas, M. (2020). Victims of Corruption: Integral Reparation and Institutional Trust as Cores of Anticorruption Strategies. Bogota: Vortex Foundation & SciVortex Corp.
- Salcedo-Albaran, E., & Garay-Salamanca, L. J. (2022). Corrupción y Hambre: Víctimas de Desnutrición Causada por Corrupción. Bogota / St. Petersburg: Vortex Foundation & SciVortex Corp.
- Salcedo-Albaran, E., & Garay-Salamanca, L. J. (2025). Simbiosis entre crimen y corrupción: de la cooptación institucional en Colombia al colapso societal en Venezuela. Bogota / Tampa: Vortex Foundation / SciVortex Corp.

- Sapkota, R., Roumeliotis, K., & Karkee, M. (2025). AI Agents vs. Agentic AI: A Conceptual Taxonomy, Applications and Challenges. arXiv:2505.10468v1.
- Shehata, D. (2022). Information Retrieval with Entity Linking. UWSpace.
- Silva, K., & Silva, T. (2021). A Review on Document Information Extraction Approaches. *Proceedings of the Student Research Workshop associated with RANLP-2021*, 174–179.
- Trani, S., Ceccarelli, D., Lucchese, C., Orlando, S., & Perego, R. (2018). SEL: a Unified Algorithm for Entity Linking and Saliency Detection. *Computational Intelligence*, 34, 2–29.
- Tsuen Wong, A. T. (2025). Opportunities and Challenges of Big Data Analytics in Crime Investigation. International Annals of Criminology, 1-15.
- Wang, J., & Han, J. (2015). Entity Linking with a Knowledge Base: Issues, Techniques, and Solutions. *IEEE Transactions on Knowledge and Data Engineering*, 27(2), 443-460.